Logo des Repositoriums
 

A Deep Learning-based Approach for Banana Leaf Diseases Classification

dc.contributor.authorAmara, Jihen
dc.contributor.authorBouaziz, Bassem
dc.contributor.authorAlgergawy, Alsayed
dc.contributor.editorMitschang, Bernhard
dc.contributor.editorNicklas, Daniela
dc.contributor.editorLeymann, Frank
dc.contributor.editorSchöning, Harald
dc.contributor.editorHerschel, Melanie
dc.contributor.editorTeubner, Jens
dc.contributor.editorHärder, Theo
dc.contributor.editorKopp, Oliver
dc.contributor.editorWieland, Matthias
dc.date.accessioned2017-06-21T11:24:45Z
dc.date.available2017-06-21T11:24:45Z
dc.date.issued2017
dc.description.abstractPlant diseases are important factors as they result in serious reduction in quality and quantity of agriculture products. Therefore, early detection and diagnosis of these diseases are important. To this end, we propose a deep learning-based approach that automates the process of classifying ba- nana leaves diseases. In particular, we make use of the LeNet architecture as a convolutional neural network to classify image data sets. The preliminary results demonstrate the effectiveness of the proposed approach even under challenging conditions such as illumination, complex background, different resolution, size, pose, and orientation of real scene images.en
dc.identifier.isbn978-3-88579-660-2
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDatenbanksysteme für Business, Technologie und Web (BTW 2017) - Workshopband
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-266
dc.subjectBanana plant diseases
dc.subjectDeep learning
dc.subjectClassification
dc.titleA Deep Learning-based Approach for Banana Leaf Diseases Classificationen
dc.typeText/Conference Paper
gi.citation.endPage88
gi.citation.publisherPlaceBonn
gi.citation.startPage79
gi.conference.date6.-10. März 2017
gi.conference.locationStuttgart
gi.conference.sessiontitleWorkshop Big (and small) Data in Science and Humanities (BigDS17)

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper09.pdf
Größe:
7.8 MB
Format:
Adobe Portable Document Format