Logo des Repositoriums
 

Mind the ARm: realtime visualization of robot motion intent in head-mounted augmented reality

dc.contributor.authorGruenefeld, Uwe
dc.contributor.authorPrädel, Lars
dc.contributor.authorIlling, Jannike
dc.contributor.authorStratmann, Tim
dc.contributor.authorDrolshagen, Sandra
dc.contributor.authorPfingsthorn, Max
dc.contributor.editorAlt, Florian
dc.contributor.editorSchneegass, Stefan
dc.contributor.editorHornecker, Eva
dc.date.accessioned2020-09-16T07:52:30Z
dc.date.available2020-09-16T07:52:30Z
dc.date.issued2020
dc.description.abstractEstablished safety sensor technology shuts down industrial robots when a collision is detected, causing preventable loss of productivity. To minimize downtime, we implemented three Augmented Reality (AR) visualizations (Path, Preview, and Volume) which allow humans to understand robot motion intent and give way to the robot. We compare the different visualizations in a user study in which a small cognitive task is performed in a shared workspace. We found that Preview and Path required significantly longer head rotations to perceive robot motion intent. Volume, however, required the shortest head rotation and was perceived as most safe, enabling closer proximity of the robot arm before one left the shared workspace without causing shutdowns.en
dc.description.urihttps://dl.acm.org/doi/10.1145/3404983.3405509en
dc.identifier.doi10.1145/3404983.3405509
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/34272
dc.language.isoen
dc.publisherACM
dc.relation.ispartofMensch und Computer 2020 - Tagungsband
dc.relation.ispartofseriesMensch und Computer
dc.subjectaugmented reality
dc.subjectcollaborative robots
dc.subjecthazard warning
dc.subjectrobot motion intent
dc.subjectvisualization
dc.titleMind the ARm: realtime visualization of robot motion intent in head-mounted augmented realityen
dc.typeText/Conference Paper
gi.citation.publisherPlaceNew York
gi.citation.startPage259–266
gi.conference.date6.-9. September 2020
gi.conference.locationMagdeburg
gi.conference.sessiontitleMCI: Full Paper
gi.document.qualitydigidoc

Dateien