Logo des Repositoriums
 

Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration

dc.contributor.authorSpieker, Helge
dc.contributor.authorGotlieb, Arnaud
dc.contributor.authorMarijan, Dusica
dc.contributor.authorMossige, Morten
dc.contributor.editorTichy, Matthias
dc.contributor.editorBodden, Eric
dc.contributor.editorKuhrmann, Marco
dc.contributor.editorWagner, Stefan
dc.contributor.editorSteghöfer, Jan-Philipp
dc.date.accessioned2019-03-29T10:24:03Z
dc.date.available2019-03-29T10:24:03Z
dc.date.issued2018
dc.description.abstractThe paper appeared at the International Symposium on Software Testing and Analysis (ISSTA 2017). It is part of a project on test case prioritization, selection, and execution in Continuous Integration (CI). Selecting the most promising test cases to detect bugs is hard if there are uncertainties on the impact of committed code changes or if traceability links between code and tests are not available. This paper introduces Retecs, a new method for automatically learning test case selection and prioritization in CI with the goal to minimize the round-trip time between code commits and developer feedback on failed test cases. Retecs uses reinforcement learning to select and prioritize test cases according to their duration, previous last execution and failure history. In a constantly changing environment, where new test cases are created and obsolete test cases are deleted, the Retecs method learns to prioritize error-prone test cases higher under the guidance of a reward function and by observing previous CI cycles. By application on three industrial case studies, we show for the first time that reinforcement learning enables fruitful automatic adaptive test case selection and prioritization in CI and regression testing.en
dc.identifier.isbn978-3-88579-673-2
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/21127
dc.language.isoen
dc.publisherGesellschaft für Informatik
dc.relation.ispartofSoftware Engineering und Software Management 2018
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-279
dc.subjectSoftware testing
dc.subjectMachine learning
dc.subjectContinuous Integration
dc.titleReinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integrationen
dc.typeText/Conference Paper
gi.citation.endPage76
gi.citation.publisherPlaceBonn
gi.citation.startPage75
gi.conference.date5.-9. März 2018
gi.conference.locationUlm
gi.conference.sessiontitleSoftware Engineering 2018 - Wissenschaftliches Hauptprogramm

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
A1-23.pdf
Größe:
52.29 KB
Format:
Adobe Portable Document Format