Logo des Repositoriums
 
Textdokument

Achieving Facial De-Identification by Taking Advantage of the Latent Space of Generative Adversarial Networks

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2021

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

The General Data Protection Regulation (EU)2016/679 passed by the European Union prohibits any data collection and processing that was conducted without the consent of the individuals involved. Especially images showing faces are often subject to these regulations and therefore, either need to be removed or anonymized. Early approaches however were often troubled by strong visual artifacts. In this work, we propose a novel anonymization pipeline that generates a proxy face for a group of individuals by taking advantage of the semantics of the latent space of generative adversarial networks. Experiments have shown that by following a 𝑘-same approach and utilizing different clustering techniques, privacy for the individuals involved can be greatly enhanced, while preserving important facial characteristics.

Beschreibung

Frick, Raphael Antonius; Steinebach, Martin (2021): Achieving Facial De-Identification by Taking Advantage of the Latent Space of Generative Adversarial Networks. INFORMATIK 2021. DOI: 10.18420/informatik2021-068. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-708-1. pp. 795-806. Workshop: Security, Datenschutz und Anonymisierung. Berlin. 27. September - 1. Oktober 2021

Zitierform

Tags