Logo des Repositoriums
 

Evolution of Degree Metrics in Large Temporal Graphs

dc.contributor.authorRost, Christopher
dc.contributor.authorGomez, Kevin
dc.contributor.authorChristen, Peter
dc.contributor.authorRahm, Erhard
dc.contributor.editorKönig-Ries, Birgitta
dc.contributor.editorScherzinger, Stefanie
dc.contributor.editorLehner, Wolfgang
dc.contributor.editorVossen, Gottfried
dc.date.accessioned2023-02-23T13:59:50Z
dc.date.available2023-02-23T13:59:50Z
dc.date.issued2023
dc.description.abstractGraph metrics, such as the simple but popular vertex degree and others based on it, are well defined for static graphs. However, adapting static metrics for temporal graphs is still part of current research. In this paper, we propose a set of temporal extensions of four degree-dependent metrics, as well as aggregations like minimum, maximum, and average degree of (i) a vertex over a time interval and (ii) a graph at a specific point in time. We show why using the static degree can lead to wrong assumptions about the relevance of a vertex in a temporal graph and highlight the need to include time as a dimension in the metric. We propose a baseline algorithm to calculate the degree evolution of all vertices in a temporal graph and show its implementation in a distributed in-memory dataflow system. Using real-world and synthetic datasets containing up to 462 million vertices and 1.7 billion edges, we show the scalability of our algorithm on a distributed cluster achieving a speedup of around 12 on 16 machines.en
dc.identifier.doi10.18420/BTW2023-23
dc.identifier.isbn978-3-88579-725-8
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40328
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBTW 2023
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-331
dc.subjectTemporal Property Graph
dc.subjectTemporal Degree
dc.subjectDegree Evolution
dc.subjectTemporal Graph Metric
dc.titleEvolution of Degree Metrics in Large Temporal Graphsen
dc.typeText/Conference Paper
gi.citation.endPage507
gi.citation.publisherPlaceBonn
gi.citation.startPage485
gi.conference.date06.-10. März 2023
gi.conference.locationDresden, Germany

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
B4-6.pdf
Größe:
617.14 KB
Format:
Adobe Portable Document Format