Textdokument
Digitizing Drilling Logs - Challenges of typewritten forms
Vorschaubild nicht verfügbar
Volltext URI
Dokumententyp
Dateien
Zusatzinformation
Datum
2021
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Quelle
Verlag
Gesellschaft für Informatik, Bonn
Zusammenfassung
In this work, we show prospects of how mining and geological documentation in the form of drilling reports can be digitized and further processed. Processing these typed and handwritten forms poses challenges for document management in renaturation projects. We highlight the structural problems of drilling reports and present three approaches for recognizing and processing the information documented in them. We use optical character recognition and document layout analysis techniques to approach the problem. Layout analysis was performed using a heuristic approach and a neural network for layout recognition. In detail, we show the approaches Form Processing (A), Table detection by line counting (B) and processing with Mask-R-CNN (C). A case study is used to show initial results and challenges. B and C are more robust than A to small changes in the form. C can recognize columns better with more training data than B in cases where table boundaries are not respected. B and C also allow other language models to be used for OCR and can thus also recognize handwriting with appropriate training data.