Logo des Repositoriums
 

Transformation von Maschinendaten als Eingabe für maschinelle Lernverfahren zur Klassifikation von landwirtschaftlichen Arbeitsgängen

dc.contributor.authorManuel Geil, Jan-Henrik Helmig
dc.date.accessioned2024-04-08T11:56:34Z
dc.date.available2024-04-08T11:56:34Z
dc.date.issued2024
dc.description.abstractLandwirte dokumentieren heutzutage noch immer häufig ihre Tätigkeiten auf Schlägen manuell, was eine aufwändige und fehleranfällige Tätigkeit darstellt. Dies wird zunehmend belastend, da die Dokumentationspflichten für Landwirte umfangreicher werden. In diesem Beitrag wurden bereits aufgenommene Maschinendaten zur Klassifikation von Maschinentätigkeiten analysiert und basierend darauf transformiert. Der daraus resultierende reduzierte Datensatz diente als Eingabe für maschinelle Lernverfahren zur Klassifikation von landwirtschaftlichen Tätigkeiten. Die Klassifikationsgenauigkeit der überprüften Verfahren lag bei über 93 %. Unter Einbezug von Daten einer fremden Landmaschine, mit denen die ML-Modelle vorher nicht trainiert wurden, war der Random Forest das Lernverfahren mit der höchsten Klassifikationsgenauigkeit. Die Ergebnisse dieser Arbeit zeigen, dass Klassifikationsmodelle maschineller Lernverfahren mit trans-formierten und reduzierten Maschinendaten Klassifikationsergebnisse zur automatisierten Tätigkeitsdokumentation liefern können.de
dc.identifier.isbn978-3-88579-738-8
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/43884
dc.language.isode
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartof44. GIL - Jahrestagung, Biodiversität fördern durch digitale Landwirtschaft
dc.relation.ispartofseriesLecture Notes in Informatics(LNI) - Proceedings, Volume P - 344
dc.subjectKlassifikation
dc.subjectmaschinelle Lernverfahren
dc.subjectMaschinendaten
dc.subjectkünstliche Intelligenz
dc.titleTransformation von Maschinendaten als Eingabe für maschinelle Lernverfahren zur Klassifikation von landwirtschaftlichen Arbeitsgängende
dc.typeText/Conference Paper
gi.citation.endPage268
gi.citation.publisherPlaceBonn
gi.citation.startPage263
gi.conference.date27.-28. Februar 2051
gi.conference.locationStuttgart
gi.conference.reviewfull

Dateien

Originalbündel
1 - 1 von 1
Vorschaubild nicht verfügbar
Name:
GIL_2024_Geil_263-268.pdf
Größe:
195.51 KB
Format:
Adobe Portable Document Format