Transformation von Maschinendaten als Eingabe für maschinelle Lernverfahren zur Klassifikation von landwirtschaftlichen Arbeitsgängen
dc.contributor.author | Manuel Geil, Jan-Henrik Helmig | |
dc.date.accessioned | 2024-04-08T11:56:34Z | |
dc.date.available | 2024-04-08T11:56:34Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Landwirte dokumentieren heutzutage noch immer häufig ihre Tätigkeiten auf Schlägen manuell, was eine aufwändige und fehleranfällige Tätigkeit darstellt. Dies wird zunehmend belastend, da die Dokumentationspflichten für Landwirte umfangreicher werden. In diesem Beitrag wurden bereits aufgenommene Maschinendaten zur Klassifikation von Maschinentätigkeiten analysiert und basierend darauf transformiert. Der daraus resultierende reduzierte Datensatz diente als Eingabe für maschinelle Lernverfahren zur Klassifikation von landwirtschaftlichen Tätigkeiten. Die Klassifikationsgenauigkeit der überprüften Verfahren lag bei über 93 %. Unter Einbezug von Daten einer fremden Landmaschine, mit denen die ML-Modelle vorher nicht trainiert wurden, war der Random Forest das Lernverfahren mit der höchsten Klassifikationsgenauigkeit. Die Ergebnisse dieser Arbeit zeigen, dass Klassifikationsmodelle maschineller Lernverfahren mit trans-formierten und reduzierten Maschinendaten Klassifikationsergebnisse zur automatisierten Tätigkeitsdokumentation liefern können. | de |
dc.identifier.doi | 10.18420/giljt2024_09 | |
dc.identifier.isbn | 978-3-88579-738-8 | |
dc.identifier.issn | 2944-7682 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/43884 | |
dc.language.iso | de | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | 44. GIL - Jahrestagung, Biodiversität fördern durch digitale Landwirtschaft | |
dc.relation.ispartofseries | Lecture Notes in Informatics(LNI) - Proceedings, Volume P - 344 | |
dc.subject | Klassifikation | |
dc.subject | maschinelle Lernverfahren | |
dc.subject | Maschinendaten | |
dc.subject | künstliche Intelligenz | |
dc.title | Transformation von Maschinendaten als Eingabe für maschinelle Lernverfahren zur Klassifikation von landwirtschaftlichen Arbeitsgängen | de |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 268 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 263 | |
gi.conference.date | 27.-28. Februar 2024 | |
gi.conference.location | Stuttgart | |
gi.conference.review | full |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- GIL_2024_Geil_263-268.pdf
- Größe:
- 195.51 KB
- Format:
- Adobe Portable Document Format