Logo des Repositoriums
 

Neural Networks for Complex Data

dc.contributor.authorCottrell, Marie
dc.contributor.authorOlteanu, Madalina
dc.contributor.authorRossi, Fabrice
dc.contributor.authorRynkiewicz, Joseph
dc.contributor.authorVilla-Vialaneix, Nathalie
dc.date.accessioned2018-01-08T09:16:10Z
dc.date.available2018-01-08T09:16:10Z
dc.date.issued2012
dc.description.abstractArtificial neural networks are simple and efficient machine learning tools. Defined originally in the traditional setting of simple vector data, neural network models have evolved to address more and more difficulties of complex real world problems, ranging from time evolving data to sophisticated data structures such as graphs and functions. This paper summarizes advances on those themes from the last decade, with a focus on results obtained by members of the SAMM team of Université Paris 1.
dc.identifier.pissn1610-1987
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/11315
dc.publisherSpringer
dc.relation.ispartofKI - Künstliche Intelligenz: Vol. 26, No. 4
dc.relation.ispartofseriesKI - Künstliche Intelligenz
dc.titleNeural Networks for Complex Data
dc.typeText/Journal Article
gi.citation.endPage380
gi.citation.startPage373

Dateien