Logo des Repositoriums
 

Towards crop yield prediction using Automated Machine Learning

dc.contributor.authorHeil, Jonathan
dc.contributor.authorValencia, Juan Manuel
dc.contributor.authorStein, Anthony
dc.contributor.editorHoffmann, Christa
dc.contributor.editorStein, Anthony
dc.contributor.editorRuckelshausen, Arno
dc.contributor.editorMüller, Henning
dc.contributor.editorSteckel, Thilo
dc.contributor.editorFloto, Helga
dc.date.accessioned2023-02-21T15:14:20Z
dc.date.available2023-02-21T15:14:20Z
dc.date.issued2023
dc.description.abstractRecently, several Machine Learning models for crop yield prediction have been introduced in literature. The models differ in the underlying methodological approaches and show variations in the temporal and spatial resolution of the databases. For the creation of the models, a deep understanding of Machine Learning is required. Therefore, Automated Machine Learning, which aims to automate the creation process of Machine Learning models, offers a promising solution as an easy entry point in Machine Learning for crop yield prediction to non-professionals. Based on publicly available data for weather, phenological and yield observations, in this work, we created a dataset for winter wheat and winter barley on Germany’s regional districts level. Furthermore, an initial evaluation of four state of the art Automated Machine Learning frameworks and three baseline models has been conducted. The results showed almost always significantly better performance of models created by Automated Machine Learning.en
dc.identifier.isbn978-3-88579-724-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40300
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartof43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-330
dc.subjectcrop yield prediction
dc.subjectAutomated Machine Learning
dc.subjectopen source data
dc.subjectwinter wheat
dc.subjectwinter barley
dc.titleTowards crop yield prediction using Automated Machine Learningen
dc.typeText/Conference Paper
gi.citation.endPage100
gi.citation.publisherPlaceBonn
gi.citation.startPage89
gi.conference.date13.-14. Februar 2023
gi.conference.locationOsnabrück

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GIL_2023_Heil_89-100.pdf
Größe:
466.04 KB
Format:
Adobe Portable Document Format