Textdokument

Multiple Sequence Alignment using Deep Reinforcement Learning

Vorschaubild nicht verfügbar
Volltext URI
Dokumententyp
Datum
2021
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Quelle
SKILL 2021
SKILL 2021
Verlag
Gesellschaft für Informatik, Bonn
Zusammenfassung
Multiple sequence alignment (MSA) is one of the primal problems in biology and bioinformatics. The question of how to align multiple sequences correctly is crucial for many other fields of research, e.g., gaining information about the evolutionary distance of two or more sequences and therefore about their corresponding species, finding protein targets for drugs, or finding a drug for a certain target protein. Reinforcement learning (RL), and especially deep reinforcement learning (DRL), has become popular in recent years. To name just a few, DRL has shown major success in complex games such as Atari Games, Chess, and Go. We model the problem of aligning multiple sequences as a Markov decision process (MDP) and examine the performance of different (D)RL algorithms compared to state-of-the-art tools.
Beschreibung
Joeres, Roman (2021): Multiple Sequence Alignment using Deep Reinforcement Learning. SKILL 2021. Gesellschaft für Informatik, Bonn. PISSN: 1614-3213. ISBN: 978-3-88579-751-7. pp. 101-112. SKILL 2021. Berlin. 28. September und 01. Oktober 2021
Zitierform
DOI
Tags