Logo des Repositoriums
 
Textdokument

Multiple Sequence Alignment using Deep Reinforcement Learning

Vorschaubild nicht verfügbar

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2021

Autor:innen

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

Multiple sequence alignment (MSA) is one of the primal problems in biology and bioinformatics. The question of how to align multiple sequences correctly is crucial for many other fields of research, e.g., gaining information about the evolutionary distance of two or more sequences and therefore about their corresponding species, finding protein targets for drugs, or finding a drug for a certain target protein. Reinforcement learning (RL), and especially deep reinforcement learning (DRL), has become popular in recent years. To name just a few, DRL has shown major success in complex games such as Atari Games, Chess, and Go. We model the problem of aligning multiple sequences as a Markov decision process (MDP) and examine the performance of different (D)RL algorithms compared to state-of-the-art tools.

Beschreibung

Joeres, Roman (2021): Multiple Sequence Alignment using Deep Reinforcement Learning. SKILL 2021. Gesellschaft für Informatik, Bonn. PISSN: 1614-3213. ISBN: 978-3-88579-751-7. pp. 101-112. SKILL 2021. Berlin. 28. September und 01. Oktober 2021

Zitierform

DOI

Tags