Logo des Repositoriums
 

Data-Driven Design and Evaluation of SMT Meta-Solving Strategies

dc.contributor.authorMues, Malte
dc.contributor.authorHowar, Falk
dc.contributor.editorGrunske, Lars
dc.contributor.editorSiegmund, Janet
dc.contributor.editorVogelsang, Andreas
dc.date.accessioned2022-01-19T12:56:54Z
dc.date.available2022-01-19T12:56:54Z
dc.date.issued2022
dc.description.abstractThe 36th IEEE/ACM International Conference on Automated Software Engineering (2021) accepted the paper ‘Data-Driven Design and Evaluation of SMT Meta-Solving Strategies: Balancing Performance, Accuracy, and Cost’ [MH21a] and selected it for an ACM SIGSOFT Distinguished Paper Award. The paper presents four generally applicable patterns for the combination of multiple SMT decision procedures in a meta-solving strategy and demonstrates how a meta-solving strategy for string constraints can be developed in a data-driven approach based on these patterns: The paper cleans up and merges existing collections of SMT benchmarks in string theory solving to evaluate and compare derived meta-solving strategies. Notably, we can demonstrate on the available data that commonly used strategies as earliest returning SMT solver do not always return the most reliable result if all available SMT solvers are combined. Instead, cross-checking strategies work slightly better at moderate overhead.en
dc.identifier.doi10.18420/se2022-ws-024
dc.identifier.isbn978-3-88579-714-2
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/37977
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftware Engineering 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-320
dc.subjectSMT Solving
dc.subjectPortfolio Solving
dc.subjectFormal Methods
dc.subjectSoftware Verification
dc.titleData-Driven Design and Evaluation of SMT Meta-Solving Strategiesen
dc.typeText/Conference Paper
gi.citation.endPage76
gi.citation.publisherPlaceBonn
gi.citation.startPage75
gi.conference.date21.-25. Feburar 2022
gi.conference.locationBerlin/Virtuell
gi.conference.sessiontitleWissenschaftliches Hauptprogramm

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
A1-24.pdf
Größe:
218.33 KB
Format:
Adobe Portable Document Format