Logo des Repositoriums
 

Improved Fingerphoto Verification System Using Multi-scale Second Order Local Structures

dc.contributor.authorWasnik, Pankaj
dc.contributor.authorRamachandra, Raghavendra
dc.contributor.authorStokkenes, Martin
dc.contributor.authorRaja, Kiran
dc.contributor.authorBusch, Christoph
dc.contributor.editorBrömme, Arslan
dc.contributor.editorBusch, Christoph
dc.contributor.editorDantcheva, Antitza
dc.contributor.editorRathgeb, Christian
dc.contributor.editorUhl, Andreas
dc.date.accessioned2019-06-17T10:00:15Z
dc.date.available2019-06-17T10:00:15Z
dc.date.issued2018
dc.description.abstractToday’s high-end smartphones are embedded with advanced fingerprint biometric recognition systems that require dedicated sensors to capture the fingerprint data. The inclusion of such sensors helps in achieving better biometric performance and hence can enable various applications that demand reliable identity verification. However, fingerphoto recognition systems have some inherent advantages over fingerprint recognition such as no latent fingerprints, and it enables the possibility to capture multiple samples at once from a biometric instance with minimal user interaction. Thus, user authentication based on fingerphotos could be a useful alternative as we can re-use the smartphone camera to capture the fingerphotos. On the other hand, such an approach introduces different challenges; for example illumination, orientation, background variation, and focus resulting in lower biometric performance. In this research, we propose a novel verification framework based on the feature extracted from the eigenvalues of convolved images using multi-scale second order Gaussian derivatives. The proposed framework is used to authenticate individuals based on images/ videos of their fingers captured using the built-in smartphone cameras. When combining with the commercial off the shelf (COTS) system, the proposed feature extraction technique has achieved the improved verification performance with an equal error rate of 2:76%.en
dc.identifier.isbn978-3-88579-676-4
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/23783
dc.language.isoen
dc.publisherKöllen Druck+Verlag GmbH
dc.relation.ispartofBIOSIG 2018 - Proceedings of the 17th International Conference of the Biometrics Special Interest Group
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-283
dc.subjectFingerphoto verification
dc.subjectSmartphone biometrics
dc.subjectContactless fingerprints
dc.subjectUser verification
dc.subjectVesselness Filter
dc.subjectImage Enhancement.
dc.titleImproved Fingerphoto Verification System Using Multi-scale Second Order Local Structuresen
dc.typeText/Conference Paper
gi.citation.publisherPlaceBonn
gi.conference.date26.-28. September 2018
gi.conference.locationDarmstadt

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
update_BIOSIG_2018_paper_64.pdf
Größe:
657.43 KB
Format:
Adobe Portable Document Format