Logo des Repositoriums
 

Survey and Comparison of Open Source Time Series Databases

dc.contributor.authorBader, Andreas
dc.contributor.authorKopp, Oliver
dc.contributor.authorFalkenthal, Michael
dc.contributor.editorMitschang, Bernhard
dc.contributor.editorNicklas, Daniela
dc.contributor.editorLeymann, Frank
dc.contributor.editorSchöning, Harald
dc.contributor.editorHerschel, Melanie
dc.contributor.editorTeubner, Jens
dc.contributor.editorHärder, Theo
dc.contributor.editorKopp, Oliver
dc.contributor.editorWieland, Matthias
dc.date.accessioned2017-06-21T11:24:39Z
dc.date.available2017-06-21T11:24:39Z
dc.date.issued2017
dc.description.abstractTime series data, i.e., data consisting of a series of timestamps and corresponding values, is a special type of data occurring in settings such as “Smart Grids”. Extended analysis techniques called for a new type of databases: Time Series Databases (TSDBs), which are specialized for storing and querying time series data. In this work, we aim for a complete list of all available TSDBs and a feature list of popular open source TSDBs. The systematic search resulted in 83 TSDBs. The twelve most prominent found open source TSDBs are compared. Therefore, 27 criteria in six groups are defined: (i) Distribution/Clusterability, (ii) Functions, (iii) Tags, Continuous Calculation, and Long-term Storage, (iv) Granularity, (v) Interfaces and Extensibility, (vi) Support and License.en
dc.identifier.isbn978-3-88579-660-2
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDatenbanksysteme für Business, Technologie und Web (BTW 2017) - Workshopband
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-266
dc.subjectTime Series Databases
dc.subjectSurvey
dc.subjectComparison
dc.titleSurvey and Comparison of Open Source Time Series Databasesen
dc.typeText/Conference Paper
gi.citation.endPage268
gi.citation.publisherPlaceBonn
gi.citation.startPage249
gi.conference.date6.-10. März 2017
gi.conference.locationStuttgart
gi.conference.sessiontitleScalable Cloud Data Management Workshop (SCDM 2017)

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper31.pdf
Größe:
283.23 KB
Format:
Adobe Portable Document Format