Logo des Repositoriums
 
Konferenzbeitrag

Assessing the performance of Neural Networks in Recognizing Manual Labor Actions in a Production Environment

Zusammenfassung

Action recognition technology has gained significant traction in recent years. This paper focuses on evaluating neural network architectures for action recognition in the production industry. By utilizing datasets tailored for production or assembly tasks, various architectures are assessed for their accuracy and performance. The findings of this study provide some insights and guidance for researchers and practitioners to select an appropriate architecture or pretrained models for action recognition in the production industry.

Beschreibung

Höfinghoff, Maximilian; Buschermöhle, Ralf; Korn, Goy-Hinrich; Schumacher, Marcel; Seipolt, Arne (2023): Assessing the performance of Neural Networks in Recognizing Manual Labor Actions in a Production Environment. INFORMATIK 2023 - Designing Futures: Zukünfte gestalten. DOI: 10.18420/inf2023_148. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-731-9. pp. 1421-1433. Ökologische Nachhaltigkeit - Zukunft nachhaltig gestalten durch digitalisierte Wertschöpfungsprozesse (DigiWe). Berlin. 26.-29. September 2023

Zitierform

Tags