Logo des Repositoriums
 

Audit, Don’t Explain – Recommendations Based on a Socio-Technical Understanding of ML-Based Systems

dc.contributor.authorHeuer, Hendrik
dc.contributor.editorWienrich, Carolin
dc.contributor.editorWintersberger, Philipp
dc.contributor.editorWeyers, Benjamin
dc.date.accessioned2021-09-05T18:56:35Z
dc.date.available2021-09-05T18:56:35Z
dc.date.issued2021
dc.description.abstractIn this position paper, I provide a socio-technical perspective on machine learning-based systems. I also explain why systematic audits may be preferable to explainable AI systems. I make concrete recommendations for how institutions governed by public law akin to the German TÜV and Stiftung Wartentest can ensure that ML systems operate in the interest of the public.en
dc.identifier.doi10.18420/muc2021-mci-ws02-232
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/37371
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofMensch und Computer 2021 - Workshopband
dc.relation.ispartofseriesMensch und Computer
dc.subjectAlgorithmic Bias
dc.subjectAlgorithmic Experience
dc.subjectAlgorithmic Transparency
dc.subjectHuman-Centered Machine Learning
dc.subjectRecommender Systems
dc.subjectSocial Media
dc.subjectUser Beliefs
dc.titleAudit, Don’t Explain – Recommendations Based on a Socio-Technical Understanding of ML-Based Systemsen
dc.typeText/Workshop Paper
gi.citation.publisherPlaceBonn
gi.conference.date5.-8. September 2021
gi.conference.locationIngolstadt
gi.conference.sessiontitleMCI-WS02: UCAI 2021: Workshop on User-Centered Artificial Intelligence
gi.document.qualitydigidoc

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
Contribution_232__a.pdf
Größe:
379.82 KB
Format:
Adobe Portable Document Format