Logo des Repositoriums
 
Workshopbeitrag

Adaptive predictive-questionnaire by approximate dynamic-programming

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Workshop Paper

Zusatzinformation

Datum

2020

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

As too much interaction can be detrimental to user experience, we investigate the computation of a smart questionnaire for a prediction task. Given time and budget constraints (maximum questions asked), this questionnaire will select adaptively the question sequence based on answers already given. Several use-cases with increased user and customer experience are given. The problem is framed as a Markov Decision Process and solved numerically with approximate dynamic programming, exploiting the hierarchical and episodic structure of the problem. The approach, evaluated on toy models and classic supervised learning datasets, outperforms two baselines: a decision tree with budget constraint and a model with best features systematically asked.

Beschreibung

Logé, Frédéric; Le Pennec, Erwan; Amadou-Boubacar, Habiboulaye (2020): Adaptive predictive-questionnaire by approximate dynamic-programming. Mensch und Computer 2020 - Workshopband. DOI: 10.18420/muc2020-ws111-264. Bonn: Gesellschaft für Informatik e.V.. MCI-WS02: UCAI 2020: Workshop on User-Centered Artificial Intelligence. Magdeburg. 6.-9. September 2020

Zitierform

Tags