Continuous support for rehabilitation using machine learning
dc.contributor.author | Philipp, Patrick | |
dc.contributor.author | Merkle, Nicole | |
dc.contributor.author | Gand, Kai | |
dc.contributor.author | Gißke, Carola | |
dc.date.accessioned | 2021-06-21T12:20:11Z | |
dc.date.available | 2021-06-21T12:20:11Z | |
dc.date.issued | 2019 | |
dc.description.abstract | Providing a suitable rehabilitation at home after an acute episode or a chronic disease is a major issue as it helps people to live independently and enhance their quality of life. However, as the rehabilitation period usually lasts some months, the continuity of care is often interrupted in the transition from the hospital to the home. Relieving the healthcare system and personalizing the care or even bringing care to the patients’ home to a greater extent is, in consequence, the superior need. This is why we propose to make use of information technology to come to participatory design driven by users needs and the personalisation of the care pathways enabled by technology. To allow this, patient rehabilitation at home needs to be supported by automatic decision-making, as physicians cannot constantly supervise the rehabilitation process. Thus, we need computer-assisted patient rehabilitation, which monitors the fitness of the current patient plan to detect sub-optimality, proposes personalised changes for a patient and eventually generalizes over patients and proposes better initial plans. Therefore, we will explain the use case of patient rehabilitation at home, the basic challenges in this field and machine learning applications that could address these challenges by technical means. | en |
dc.identifier.doi | 10.1515/itit-2019-0022 | |
dc.identifier.pissn | 2196-7032 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/36671 | |
dc.language.iso | en | |
dc.publisher | De Gruyter | |
dc.relation.ispartof | it - Information Technology: Vol. 61, No. 5-6 | |
dc.subject | Automated Patient Rehabilitation | |
dc.subject | Machine Learning | |
dc.subject | Reinforcement Learning | |
dc.subject | Semantic Web | |
dc.title | Continuous support for rehabilitation using machine learning | en |
dc.type | Text/Journal Article | |
gi.citation.endPage | 284 | |
gi.citation.publisherPlace | Berlin | |
gi.citation.startPage | 273 |