Parallel Function Optimisation Using Evolutionary Algorithms and Deterministic Neighbourhood Search
dc.contributor.author | Zgeras, Ioannis | |
dc.contributor.author | Brehm, Jürgen | |
dc.contributor.author | Reisch, Andreas | |
dc.date.accessioned | 2017-12-06T09:06:17Z | |
dc.date.available | 2017-12-06T09:06:17Z | |
dc.date.issued | 2011 | |
dc.description.abstract | Modern computer hardware provides massive computational power by parallelism. However, many of the existing algorithms and frameworks are optimised for sequential execution and are not capable to be parallelised or do not scale well on complex parallel architectures. In our paper, we present a metaheuristic consisting of a parallel Evolutionary Algorithm and a parallel Neighbourhood Search. For the implementation massively parallel GPUs are used. This framework is evaluated on the application of function optimisation. | en |
dc.identifier.doi | 10.1007/BF03341994 | |
dc.identifier.pissn | 0177-0454 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/8563 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | PARS: Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware: Vol. 28, No. 1 | |
dc.relation.ispartofseries | PARS: Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware | |
dc.subject | Particle Swarm Optimization | |
dc.subject | Evolutionary Algorithm | |
dc.subject | Graphic Processing Unit | |
dc.subject | Function Optimisation | |
dc.subject | Variable Neighbourhood Search | |
dc.title | Parallel Function Optimisation Using Evolutionary Algorithms and Deterministic Neighbourhood Search | en |
dc.type | Text/Journal Article | |
gi.citation.endPage | 156 | |
gi.citation.startPage | 152 |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- 40731_2014_Article_BF03341994.pdf
- Größe:
- 226.74 KB
- Format:
- Adobe Portable Document Format