Logo des Repositoriums
 

Parallel Function Optimisation Using Evolutionary Algorithms and Deterministic Neighbourhood Search

dc.contributor.authorZgeras, Ioannis
dc.contributor.authorBrehm, Jürgen
dc.contributor.authorReisch, Andreas
dc.date.accessioned2017-12-06T09:06:17Z
dc.date.available2017-12-06T09:06:17Z
dc.date.issued2011
dc.description.abstractModern computer hardware provides massive computational power by parallelism. However, many of the existing algorithms and frameworks are optimised for sequential execution and are not capable to be parallelised or do not scale well on complex parallel architectures. In our paper, we present a metaheuristic consisting of a parallel Evolutionary Algorithm and a parallel Neighbourhood Search. For the implementation massively parallel GPUs are used. This framework is evaluated on the application of function optimisation.en
dc.identifier.doi10.1007/BF03341994
dc.identifier.pissn0177-0454
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/8563
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofPARS: Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware: Vol. 28, No. 1
dc.relation.ispartofseriesPARS: Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware
dc.subjectParticle Swarm Optimization
dc.subjectEvolutionary Algorithm
dc.subjectGraphic Processing Unit
dc.subjectFunction Optimisation
dc.subjectVariable Neighbourhood Search
dc.titleParallel Function Optimisation Using Evolutionary Algorithms and Deterministic Neighbourhood Searchen
dc.typeText/Journal Article
gi.citation.endPage156
gi.citation.startPage152

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
40731_2014_Article_BF03341994.pdf
Größe:
226.74 KB
Format:
Adobe Portable Document Format