Konferenzbeitrag

Multi-algorithm Benchmark for Fingerprint Presentation Attack Detection with Laser Speckle Contrast Imaging

Vorschaubild nicht verfügbar
Volltext URI
Dokumententyp
Text/Conference Paper
Datum
2019
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Quelle
BIOSIG 2019 - Proceedings of the 18th International Conference of the Biometrics Special Interest Group
Regular Research Papers
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
The increased usage of biometric authentication systems has raised concerns regarding the security of components in a biometric system. As a consequence, preventing security issues related to presentation attacks targeting the biometric capture device are of utmost importance. To develop presentation attack detection (PAD) mechanisms, features confirming the liveness of the biometric characteristic such as the blood flow within the finger are needed. Utilising laser speckle contrast imaging (LSCI) to observe blood movement below the surface, we present an evaluation of different machine learning classifiers for fingerprint PAD. The experiments over a database comprising 35 different presentation attack instrument (PAI) species show that the detection performance varies depending on the utilised feature extraction method. A majority voting of selected classifiers and features achieves an APCER of 9% for a convenient BPCER of 0.05%.
Beschreibung
Kolberg, Jascha; Gomez-Barrero, Marta; Busch, Christoph (2019): Multi-algorithm Benchmark for Fingerprint Presentation Attack Detection with Laser Speckle Contrast Imaging. BIOSIG 2019 - Proceedings of the 18th International Conference of the Biometrics Special Interest Group. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-690-9. pp. 119-128. Regular Research Papers. Darmstadt, Germany. 18.-20. September 2019
Zitierform
DOI
Tags