Logo des Repositoriums
 

‘Not all algorithms!' Lessons from the Private Sector on Mitigating Gender Discrimination

dc.contributor.authorWinkler,Mareike
dc.contributor.authorKöhne,Sonja
dc.contributor.authorKlöpper,Miriam
dc.contributor.editorDemmler, Daniel
dc.contributor.editorKrupka, Daniel
dc.contributor.editorFederrath, Hannes
dc.date.accessioned2022-09-28T17:10:04Z
dc.date.available2022-09-28T17:10:04Z
dc.date.issued2022
dc.description.abstractIn the public sector, the use of algorithmic decision-making (ADM) systems can be directly linked to crucial state assistance, such as welfare benefits. Prominent examples such as an algorithm of the Public Employment Service Austria, that predicted below-average placement chances for women, underline the high risks of systematic gender discrimination. The use of ADM is rather novel in the public sector. The private sector, on the other hand, can resort to a relative wealth of experience in adopting such algorithms and dealing with algorithmic gender discrimination, for example in recruiting. Based on empirical examples our paper 1) explores how gender is currently considered in the development of ADM for the public sector, 2) highlights the potential risks of algorithmic gender discrimination, and 3) analyzes how the public sector can learn from the experience of the private sector in mitigating these risks.en
dc.identifier.doi10.18420/inf2022_110
dc.identifier.isbn978-3-88579-720-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39484
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-326
dc.subjecteGov
dc.subjectalgorithmic decision-making
dc.subjectautomation bias
dc.subjectalgorithmic bias
dc.subjectgender discrimination
dc.title‘Not all algorithms!' Lessons from the Private Sector on Mitigating Gender Discriminationen
gi.citation.endPage1303
gi.citation.startPage1289
gi.conference.date26.-30. September 2022
gi.conference.locationHamburg
gi.conference.sessiontitleeGov-FemTech

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
egovfemtech_01.pdf
Größe:
188.66 KB
Format:
Adobe Portable Document Format