Konferenzbeitrag

JPTest - Grading Data Science Exercises in Jupyter Made Short, Fast and Scalable

Vorschaubild nicht verfügbar
Volltext URI
Dokumententyp
Text/Conference Paper
Datum
2023
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Quelle
BTW 2023
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
Jupyter Notebook is not only a popular tool for publishing data science results, but canalso be used for the interactive explanation of teaching content as well as the supervised work onexercises. In order to give students feedback on their solutions, it is necessary to check and evaluatethe submitted work. To exploit the possibilities of remote learning as well as to reduce the workneeded to evaluate submissions, we present a flexible and efficient framework. It enables automatedchecking of notebooks for completeness and syntactic correctness as well as fine-grained evaluationof submitted tasks. The framework comes with a high level of parallelization, isolation and a shortand efficient API.
Beschreibung
Tröbs, Eric; Hagedorn, Stefan; Sattler, Kai-Uwe (2023): JPTest - Grading Data Science Exercises in Jupyter Made Short, Fast and Scalable. BTW 2023. DOI: 10.18420/BTW2023-37. Bonn: Gesellschaft für Informatik e.V.. ISBN: 978-3-88579-725-8. pp. 673-679. Dresden, Germany. 06.-10. März 2023
Zitierform
Tags