Logo des Repositoriums
 
Konferenzbeitrag

JPTest - Grading Data Science Exercises in Jupyter Made Short, Fast and Scalable

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2023

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Quelle

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Jupyter Notebook is not only a popular tool for publishing data science results, but canalso be used for the interactive explanation of teaching content as well as the supervised work onexercises. In order to give students feedback on their solutions, it is necessary to check and evaluatethe submitted work. To exploit the possibilities of remote learning as well as to reduce the workneeded to evaluate submissions, we present a flexible and efficient framework. It enables automatedchecking of notebooks for completeness and syntactic correctness as well as fine-grained evaluationof submitted tasks. The framework comes with a high level of parallelization, isolation and a shortand efficient API.

Beschreibung

Tröbs, Eric; Hagedorn, Stefan; Sattler, Kai-Uwe (2023): JPTest - Grading Data Science Exercises in Jupyter Made Short, Fast and Scalable. BTW 2023. DOI: 10.18420/BTW2023-37. Bonn: Gesellschaft für Informatik e.V.. ISBN: 978-3-88579-725-8. pp. 673-679. Dresden, Germany. 06.-10. März 2023

Zitierform

Tags