Logo des Repositoriums
 

Support vector machines in relational databases

dc.contributor.authorRüping, Stefan
dc.contributor.editorSchubert, Sigrid E.
dc.contributor.editorReusch, Bernd
dc.contributor.editorJesse, Norbert
dc.date.accessioned2019-11-28T09:31:24Z
dc.date.available2019-11-28T09:31:24Z
dc.date.issued2002
dc.description.abstractToday, most of the data in business applications is stored in relational databases. Relational database systems are so popular, because they offer solutions to many problems around data storage, such as efficiency, effectiveness, usability, security and multi-user support. To benefit from these advantages in Support Vector Machine (SVM) learning, we will develop an implementation of the SVM learning algorithm, that can be run inside a relational database system. Even if this kind of implementation obviously cannot be as efficient as a standalone implementation, it will be favorable in situations, where requirements other than efficiency for learning play an important role.en
dc.identifier.isbn3-88579-348-2
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/30312
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofInformatik bewegt: Informatik 2002 - 32. Jahrestagung der Gesellschaft für Informatik e.v. (GI)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-19
dc.titleSupport vector machines in relational databasesen
dc.typeText/Conference Paper
gi.citation.endPage804
gi.citation.publisherPlaceBonn
gi.citation.startPage799
gi.conference.date30. September - 3. Oktober 2002
gi.conference.locationDortmund
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GI-Proceedings.19-128.pdf
Größe:
172.71 KB
Format:
Adobe Portable Document Format