Logo des Repositoriums
 

Using OPEN.xtrace and Architecture-Level Models to Predict Workload Performance on In-Memory Database Systems

dc.contributor.authorBarnert, Maximilian
dc.contributor.authorStreitz, Adrian
dc.contributor.authorRank, Johannes
dc.contributor.authorKienegger, Harald
dc.contributor.authorKrcmar, Helmut
dc.contributor.editorKelter, Udo
dc.date.accessioned2023-02-27T13:59:27Z
dc.date.available2023-02-27T13:59:27Z
dc.date.issued2019
dc.description.abstractIn-Memory Database Systems (IMDB) come into operation on highly dynamic on-premise and cloud environments. Existing approaches use classical modeling notations such as queuing network models (QN) to reflect performance on IMDB. Changes to workload or hardware come along with a recreation of entire models. At the same time, new paradigms for IMDB increase parallelism within database workload, which intensifies the effort to create and parameterize models. To simplify and reduce the effort for researchers and practitioners to model workload performance on IMDB, we propose the use of architecture level performance models and present a model creation process, which transforms database traces of SAP HANA to the Palladio Component Model (PCM). We evaluate our approach based on experiments using analytical workload. We receive prediction errors for response time and throughput below 4 %.en
dc.identifier.pissn0720-8928
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40489
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftwaretechnik-Trends Band 39, Heft 4
dc.relation.ispartofseriesSoftwaretechnik-Trends
dc.subjectperformance
dc.subjectIn-Memory Database Systems
dc.subjectworkload
dc.subjectprediction
dc.titleUsing OPEN.xtrace and Architecture-Level Models to Predict Workload Performance on In-Memory Database Systemsen
dc.typeText/Conference Paper
gi.citation.endPage7
gi.citation.publisherPlaceBonn
gi.citation.startPage5
gi.conference.date5.-6. November 2019
gi.conference.locationWürzburg
gi.conference.sessiontitle10th Symposium on Software Performance (SSP)

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
SSP2019_Barnert.pdf
Größe:
277.34 KB
Format:
Adobe Portable Document Format