Konferenzbeitrag
Papierabruf, Zusammenfassung und Zitaterzeugung
Vorschaubild nicht verfügbar
Volltext URI
Dokumententyp
Text/Conference Paper
Dateien
Datum
2023
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Quelle
Ausgezeichnete Informatikdissertationen 2022 (Band D23)
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
Diese Arbeit präsentiert ein integriertes System für effizienten Abruf, Zusammenfassung und Erzeugung von Zitaten wissenschaftlicher Literatur. Wir schlagen ein Zwei-Stufen- Zitationsempfehlungssystem vor, das Geschwindigkeit und Genauigkeit ausbalanciert. Darüber hinaus stellen wir ein leichtgewichtiges Modell auf Basis von verstärkendem Lernen vor, um wissenschaftliche Artikel effizient zusammenzufassen. Wir präsentieren auch ein steuerbares Modell zur Zitaterzeu- gung, das durch bestimmte Zitatattribute gesteuert wird. Schließlich werden diese Teilsysteme in einer benutzerfreundlichen Benutzeroberfläche vereint, die zur KI-gesteuerten wissenschaftlichen Schlussfolgerung beiträgt und Autoren beim wissenschaftlichen Schreiben unterstützt.
Diese Arbeit präsentiert ein integriertes System für effizienten Abruf, Zusammenfassung und Erzeugung von Zitaten wissenschaftlicher Literatur. Wir schlagen ein Zwei-Stufen- Zitationsempfehlungssystem vor, das Geschwindigkeit und Genauigkeit ausbalanciert. Darüber hinaus stellen wir ein leichtgewichtiges Modell auf Basis von verstärkendem Lernen vor, um wissenschaftliche Artikel effizient zusammenzufassen. Wir präsentieren auch ein steuerbares Modell zur Zitaterzeu- gung, das durch bestimmte Zitatattribute gesteuert wird. Schließlich werden diese Teilsysteme in einer benutzerfreundlichen Benutzeroberfläche vereint, die zur KI-gesteuerten wissenschaftlichen Schlussfolgerung beiträgt und Autoren beim wissenschaftlichen Schreiben unterstützt.
Diese Arbeit präsentiert ein integriertes System für effizienten Abruf, Zusammenfassung und Erzeugung von Zitaten wissenschaftlicher Literatur. Wir schlagen ein Zwei-Stufen- Zitationsempfehlungssystem vor, das Geschwindigkeit und Genauigkeit ausbalanciert. Darüber hinaus stellen wir ein leichtgewichtiges Modell auf Basis von verstärkendem Lernen vor, um wissenschaftliche Artikel effizient zusammenzufassen. Wir präsentieren auch ein steuerbares Modell zur Zitaterzeu- gung, das durch bestimmte Zitatattribute gesteuert wird. Schließlich werden diese Teilsysteme in einer benutzerfreundlichen Benutzeroberfläche vereint, die zur KI-gesteuerten wissenschaftlichen Schlussfolgerung beiträgt und Autoren beim wissenschaftlichen Schreiben unterstützt.