Logo des Repositoriums
 

Pattern based decision tree analysis for risk detection in smart cities

dc.contributor.authorScholz, Matthias
dc.contributor.authorPiller:, Gunther
dc.contributor.editorEibl, Maximilian
dc.contributor.editorGaedke, Martin
dc.date.accessioned2017-08-28T23:49:34Z
dc.date.available2017-08-28T23:49:34Z
dc.date.issued2017
dc.description.abstractIncreasing amounts of data on living environments and human interactions are becoming available. Their potential for valuable services improving the wellbeing of individuals is large and growing. This calls for an investigation of algorithms and system architectures that support possible use cases. In this paper we outline how pattern based decision tree analyses can be applied to the identification of risks caused by time-dependent effects from multiple influencing factors. For this purpose we apply the method to open data on car accidents and weather conditions. We also show how such systems can take advantage from up-to-date in-memory technology.en
dc.identifier.doi10.18420/in2017_95
dc.identifier.isbn978-3-88579-669-5
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2017
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-275
dc.subjectData Mining
dc.subjectIn-Memory Computing
dc.subjectSmart City Services
dc.titlePattern based decision tree analysis for risk detection in smart citiesen
gi.citation.endPage938
gi.citation.startPage931
gi.conference.date25.-29. September 2017
gi.conference.locationChemnitz
gi.conference.sessiontitleSENSYBLE – Smart Systems for Better Living Environments

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
B11-8.pdf
Größe:
866.79 KB
Format:
Adobe Portable Document Format