Logo des Repositoriums
 

Pollen detection from honey sediments via Region-Based Convolutional Neural Networks

dc.contributor.authorViertel, Philipp
dc.contributor.authorKoenig, Matthias
dc.contributor.authorRexilius, Jan
dc.contributor.editorGandorfer, Markus
dc.contributor.editorHoffmann, Christa
dc.contributor.editorEl Benni, Nadja
dc.contributor.editorCockburn, Marianne
dc.contributor.editorAnken, Thomas
dc.contributor.editorFloto, Helga
dc.date.accessioned2022-02-24T13:34:54Z
dc.date.available2022-02-24T13:34:54Z
dc.date.issued2022
dc.description.abstractThis paper deals with the localization and classification of pollen grains in light-microscopic images from pollen samples and honey sediments. A laboratory analysis of the honey sediment offers precise information of the honey composition. By utilizing state of the art deep neural networks, we show the possibility of automatizing the process of pollen counting and identification. For that purpose, we created and labelled our own data set comprising two pollen classes and trained and evaluated a regional-based neural network. Our results show that the majority of pollen grains are correctly detected. The pollen frequency in the honey sediment is on par with the majority pollen class, however, more samples and further investigation are required to ensure stable results and practicality.en
dc.identifier.isbn978-3-88579-711-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/38415
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartof42. GIL-Jahrestagung, Künstliche Intelligenz in der Agrar- und Ernährungswirtschaft
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-317
dc.subjectDeep Learning
dc.subjectpalynology
dc.subjectmelissopalynology
dc.subjectpollen analysis
dc.subjectobject detection
dc.titlePollen detection from honey sediments via Region-Based Convolutional Neural Networksen
dc.typeText/Conference Paper
gi.citation.endPage306
gi.citation.publisherPlaceBonn
gi.citation.startPage301
gi.conference.date21.-22. Februar 2022
gi.conference.locationTänikon, Online

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GIL2022_Viertel_301-306.pdf
Größe:
867.78 KB
Format:
Adobe Portable Document Format