Logo des Repositoriums
 
Konferenzbeitrag

Curricular SincNet: Towards Robust Deep Speaker Recognition by Emphasizing Hard Samples in Latent Space

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2021

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Deep learning models have become an increasingly preferred option for biometric recognition systems; such as speaker recognition. SincNet, a deep neural network architecture gained popularity in speaker recognition tasks, due to its use of parameterized sinc functions that allow it to work directly on the speech signal. The original SincNet architecture uses the softmax loss which may not be the most suitable choice for recognition-based tasks, as such loss functions do not impose inter-class margins nor does it differentiate between easy and hard training samples. Curriculum learning, particularly those leveraging angular margin-based losses has proven to be very successful in other biometric applications such as face recognition. The advantage of such a curriculum learning-based techniques is that it will impose inter-class margins as well as taking to account easy and hard samples. In this paper, we propose Curricular SincNet (CL-SincNet), an improved SincNet model where we use a curricular loss function to do the training on the SincNet architecture. The proposed model is evaluated on multiple datasets using intra-dataset and inter-dataset evaluation protocol. In both settings, the model performs competitively with other previously published work and in the case of inter-dataset testing, it achieves the best overall results with a reduction of 4% error rate compare to SincNet and other published work.

Beschreibung

Chowdhury, Labib; Kamal, Mustafa; Tasnim, Najia; Mohammed, Nabeel (2021): Curricular SincNet: Towards Robust Deep Speaker Recognition by Emphasizing Hard Samples in Latent Space. BIOSIG 2021 - Proceedings of the 20th International Conference of the Biometrics Special Interest Group. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-709-8. pp. 43-50. Regular Research Papers. International Digital Conference. 15.-17. September 2021

Zitierform

DOI

Tags