Logo des Repositoriums
 

The Road Map to FAME: A Framework for Mining and Formal Evaluation of Arguments

dc.contributor.authorBaumann, Ringo
dc.contributor.authorWiedemann, Gregor
dc.contributor.authorHeinrich, Maximilian
dc.contributor.authorHakimi, Ahmad Dawar
dc.contributor.authorHeyer, Gerhard
dc.date.accessioned2021-05-04T09:37:30Z
dc.date.available2021-05-04T09:37:30Z
dc.date.issued2020
dc.description.abstractTwo different perspectives on argumentation have been pursued in computer science research, namely approaches of argument mining in natural language processing on the one hand, and formal argument evaluation on the other hand. So far these research areas are largely independent and unrelated. This article introduces the agenda of our recently started project “FAME – A framework for argument mining and evaluation”. The main project idea is to link the two perspectives on argumentation and their respective research agendas by employing controlled natural language as a convenient form of intermediate knowledge representation. Our goal is to develop a framework which integrates argument mining and formal argument evaluation to study patterns of empirical argumentation usage. If successful, this combination will allow for new types of queries to be answered by argumentation retrieval systems and large-scale content analysis. Moreover, feeding evaluation results as additional knowledge input to argument mining processes could be utilized to further improve their results.de
dc.identifier.doi10.1007/s13222-020-00343-x
dc.identifier.pissn1610-1995
dc.identifier.urihttp://dx.doi.org/10.1007/s13222-020-00343-x
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/36396
dc.publisherSpringer
dc.relation.ispartofDatenbank-Spektrum: Vol. 20, No. 2
dc.relation.ispartofseriesDatenbank-Spektrum
dc.subjectArgument Evaluation
dc.subjectArgument Mining
dc.subjectControlled Natural Languages
dc.titleThe Road Map to FAME: A Framework for Mining and Formal Evaluation of Argumentsde
dc.typeText/Journal Article
gi.citation.endPage113
gi.citation.startPage107

Dateien