Logo des Repositoriums
 

Argument Mining on Twitter: A survey

dc.contributor.authorSchaefer, Robin
dc.contributor.authorStede, Manfred
dc.date.accessioned2021-06-21T09:21:13Z
dc.date.available2021-06-21T09:21:13Z
dc.date.issued2021
dc.description.abstractIn the last decade, the field of argument mining has grown notably. However, only relatively few studies have investigated argumentation in social media and specifically on Twitter. Here, we provide the, to our knowledge, first critical in-depth survey of the state of the art in tweet-based argument mining. We discuss approaches to modelling the structure of arguments in the context of tweet corpus annotation, and we review current progress in the task of detecting argument components and their relations in tweets. We also survey the intersection of argument mining and stance detection, before we conclude with an outlook.en
dc.identifier.doi10.1515/itit-2020-0053
dc.identifier.pissn2196-7032
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/36545
dc.language.isoen
dc.publisherDe Gruyter
dc.relation.ispartofit - Information Technology: Vol. 63, No. 1
dc.subjectArgument Mining
dc.subjectTwitter
dc.subjectStance Detection
dc.titleArgument Mining on Twitter: A surveyen
dc.typeText/Journal Article
gi.citation.endPage58
gi.citation.publisherPlaceBerlin
gi.citation.startPage45

Dateien