Logo des Repositoriums
 

Argumentative explanations for recommendations - Effect of display style and profile transparency

dc.contributor.authorHernandez-Bocanegra, Diana Carolina
dc.contributor.authorZiegler, Jürgen
dc.contributor.editorHansen, Christian
dc.contributor.editorNürnberger, Andreas
dc.contributor.editorPreim, Bernhard
dc.date.accessioned2020-08-18T15:19:48Z
dc.date.available2020-08-18T15:19:48Z
dc.date.issued2020
dc.description.abstractProviding explanations based on user reviews in recommender systems may increase users’ perception of transparency. However, little is known about how these explanations should be presented to users in order to increase both their understanding and acceptance. We present in this paper a user study to investigate the effect of different display styles (visual and text only) on the perception of review-based explanations for recommended hotels. Additionally, we also aim to test the differences in users’ perception when providing information about their own profiles, in addition to a summarized view on the opinions of other users about the recommended hotel. Our results suggest that the perception of explanations regarding these aspects may vary depending on user characteristics, such as decision-making styles or social awareness.en
dc.identifier.doi10.18420/muc2020-ws111-338
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/33510
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofMensch und Computer 2020 - Workshopband
dc.relation.ispartofseriesMensch und Computer
dc.subjectRecommender systems
dc.subjectuser study
dc.subjectexplanations
dc.titleArgumentative explanations for recommendations - Effect of display style and profile transparencyen
dc.typeText/Workshop Paper
gi.citation.publisherPlaceBonn
gi.conference.date6.-9. September 2020
gi.conference.locationMagdeburg
gi.conference.sessiontitleMCI-WS02: UCAI 2020: Workshop on User-Centered Artificial Intelligence
gi.document.qualitydigidoc

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
muc2020-ws-338.pdf
Größe:
1.53 MB
Format:
Adobe Portable Document Format