Konferenzbeitrag

Segmentation-level fusion for iris recogntion

Lade...
Vorschaubild
Volltext URI
Dokumententyp
Text/Conference Paper
Datum
2015
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Quelle
BIOSIG 2015
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
This paper investigates the potential of fusion at normalisation/segmentation level prior to feature extraction. While there are several biometric fusion methods at data/feature level, score level and rank/decision level combining raw biometric signals, scores, or ranks/decisions, this type of fusion is still in its infancy. However, the increasing demand to allow for more relaxed and less invasive recording conditions, especially for on-the-move iris recognition, suggests to further investigate fusion at this very low level. This paper focuses on the approach of multi-segmentation fusion for iris biometric systems investigating the benefit of combining the segmentation result of multiple normalisation algorithms, using four methods from two different public iris toolkits (USIT, OSIRIS) on the public CASIA and IITD iris datasets. Evaluations based on recognition accuracy and ground truth segmentation data indicate high sensitivity with regards to the type of errors made by segmentation algorithms.
Beschreibung
Wild, Peter; Hofbauer, Heinz; Ferryman, James; Uhl, Andreas (2015): Segmentation-level fusion for iris recogntion. BIOSIG 2015. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-639-8. pp. 61-72. Darmstadt. 9.-11. September 2015
Schlagwörter
Zitierform
DOI
Tags