For5G: Systematic approach for creating digital twins of cherry orchards
dc.contributor.author | Meyer, Lukas | |
dc.contributor.author | Gilson, Andreas | |
dc.contributor.author | Uhrmann, Franz | |
dc.contributor.author | Weule, Mareike | |
dc.contributor.author | Keil, Fabian | |
dc.contributor.author | Haunschild, Bernhard | |
dc.contributor.author | Oschek, Joachim | |
dc.contributor.author | Steglich, Marco | |
dc.contributor.author | Hansen, Jonathan | |
dc.contributor.author | Stamminger, Marc | |
dc.contributor.author | Scholz, Oliver | |
dc.contributor.editor | Hoffmann, Christa | |
dc.contributor.editor | Stein, Anthony | |
dc.contributor.editor | Ruckelshausen, Arno | |
dc.contributor.editor | Müller, Henning | |
dc.contributor.editor | Steckel, Thilo | |
dc.contributor.editor | Floto, Helga | |
dc.date.accessioned | 2023-02-21T15:14:10Z | |
dc.date.available | 2023-02-21T15:14:10Z | |
dc.date.issued | 2023 | |
dc.description.abstract | We present a systematic approach for creating digital twins of cherry trees in orchards as part of the project “For5G: Digital Twin”. We aim to develop a basic concept for 5G applications in orchards using a mobile campus network. Digital twins monitor the status of individual trees in every aspect and are a crucial step for the digitalization of processes in horticulture. Our framework incorporates a transformation of photometric data to a 3D reconstruction, which is subsequently segmented and modeled using learning-based approaches. Collecting objective phenotypic features from individual trees over time and storing them in a knowledge graph offers a convenient foundation for gaining new insights. Our approach shows promising results at this point for creating a detailed digital twin of a cherry tree and ultimately the entire orchard. | en |
dc.identifier.isbn | 978-3-88579-724-1 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/40283 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | 43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-330 | |
dc.subject | 5G | |
dc.subject | cherry tree | |
dc.subject | deep learning | |
dc.subject | digital horticulture | |
dc.subject | digital twin | |
dc.subject | knowledge graph | |
dc.subject | orchard | |
dc.subject | phenotyping | |
dc.subject | photogrammetry | |
dc.subject | precision farming | |
dc.subject | UAV | |
dc.title | For5G: Systematic approach for creating digital twins of cherry orchards | en |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 416 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 411 | |
gi.conference.date | 13.-14. Februar 2023 | |
gi.conference.location | Osnabrück |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- GIL_2023_Meyer_411-416.pdf
- Größe:
- 451.06 KB
- Format:
- Adobe Portable Document Format