Logo des Repositoriums
 

Human-Centered Optimization of Task Allocation in Multi Human-Robot Systems

dc.contributor.authorSafari Dehnavi, Zahra
dc.contributor.authorSchlund, Sebastian
dc.date.accessioned2023-08-24T06:24:30Z
dc.date.available2023-08-24T06:24:30Z
dc.date.issued2023
dc.description.abstractIn industrial settings, multi-human-robot systems are common. Enhancing work systems requires considering human factors in task allocation between humans and robots. This paper highlights the significance of human-centric task allocation in multi agent settings. The research tackles three challenges in optimized task allocation: complex optimization models with machine learning algorithms, accurate representation of human factors, and effective human-robot interfaces. Overcoming these challenges is vital for improving productivity and well-being of human workers.de
dc.identifier.doi10.18420/muc2023-mci-ws16-398
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/42147
dc.publisherGI
dc.relation.ispartofMensch und Computer 2023 - Workshopband
dc.relation.ispartofseriesMensch und Computer
dc.subjectTask allocation
dc.subjectMulti-human-robot task sharing
dc.subjectAI
dc.subjecthuman-centered
dc.titleHuman-Centered Optimization of Task Allocation in Multi Human-Robot Systemsde
dc.typeText/Workshop Paper
gi.conference.date3.-6. September 2023
gi.conference.locationRapperswil
gi.conference.sessiontitleMCI-WS16 - UCAI 2023: Workshop on User-Centered Artificial Intelligence

Dateien

OriginalbĂĽndel
1 - 1 von 1
Lade...
Vorschaubild
Name:
muc23-mci-ws16-398.pdf
Größe:
174.02 KB
Format:
Adobe Portable Document Format