Logo des Repositoriums
 

Flexible data partitioning schemes for parallel merge joins in semantic web queries

dc.contributor.authorWarnke, Benjamin
dc.contributor.authorRehan, Muhammad Waqas
dc.contributor.authorFischer, Stefan
dc.contributor.authorGroppe, Sven
dc.contributor.editorKai-Uwe Sattler
dc.contributor.editorMelanie Herschel
dc.contributor.editorWolfgang Lehner
dc.date.accessioned2021-03-16T07:57:09Z
dc.date.available2021-03-16T07:57:09Z
dc.date.issued2021
dc.description.abstractIn the context of the Semantic Web, large amounts of data must be preprocessed and stored so that they can be queried efficiently later. The key technology in this topic are triple stores, in which all information is stored in the form of (subject, predicate and object) triple patterns. Depending on the triple patterns used within the queries, very different value distributions can be observed within these datasets. Currently, these properties are only exploited implicitly during join optimization in the form of histograms or similar technologies. This paper proposes a new way to take advantage of these different distributions using different partitioning schemes at runtime. This means that an optimal partitioning scheme can be used depending on the data access in order to improve query performance. In the experiments we achieve speedups up to a factor of 5.92 in comparison to no partitioning, and a performance improvement of up to 81% compared to a not optimal number of partitions.en
dc.identifier.doi10.18420/btw2021-12
dc.identifier.isbn978-3-88579-705-0
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/35795
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofBTW 2021
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-311
dc.subjectTriple store
dc.subjectPartitioning
dc.subjectParallel Join
dc.titleFlexible data partitioning schemes for parallel merge joins in semantic web queriesen
gi.citation.endPage256
gi.citation.startPage237
gi.conference.date13.-17. September 2021
gi.conference.locationDresden
gi.conference.sessiontitleData Integration, Semantic Data Management, Streaming

Dateien

Originalbündel
1 - 1 von 1
Vorschaubild nicht verfügbar
Name:
A3-2.pdf
Größe:
496.56 KB
Format:
Adobe Portable Document Format