Logo des Repositoriums
 

Integrating feature selection methods for gene selection

dc.contributor.authorSaengsiri, Patharawut
dc.contributor.authorWichian, Sageemas Na
dc.contributor.authorMeesad, Phayung
dc.contributor.authorHerwig, Unger
dc.contributor.editorEichler, Gerald
dc.contributor.editorKüpper, Axel
dc.contributor.editorSchau, Volkmar
dc.contributor.editorFouchal, Hacène
dc.contributor.editorUnger, Herwig
dc.contributor.editorEichler, Gerald
dc.contributor.editorKüpper, Axel
dc.contributor.editorSchau, Volkmar
dc.contributor.editorFouchal, Hacène
dc.contributor.editorUnger, Herwig
dc.date.accessioned2019-01-11T09:29:01Z
dc.date.available2019-01-11T09:29:01Z
dc.date.issued2011
dc.description.abstractIn fact, cancer is produced for genetic reasons. So, gene feature selection techniques are very important for biological processes which help to find subsets of informative genes. However, the quality of recognition is still not sufficient and leads to low accuracy rates. Hence, this research proposes integrating a feature selection method (IFS). There two phases of IFS: 1) determining feature length by Gain Ratio (GR) and 2) estimating each rank list using a wrapper approach based on K-nearest neighbor classification (KNN), Support Vector Machine (SVM), and Random Forest (RF). Experimental results based on two gene expression datasets, it is found that the proposed method not only has higher accuracy rate than tradition methods, but also reduce many irrelevant features. In addition, most models based on IFS method are more beneficial when working with two or multi-classes.en
dc.identifier.isbn978-3-88579-280-2
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/18978
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartof11th International Conference on Innovative Internet Community Systems (I2CS 2011)
dc.relation.ispartof11th International Conference on Innovative Internet Community Systems (I2CS 2011)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-186
dc.titleIntegrating feature selection methods for gene selectionen
dc.typeText/Conference Paper
gi.citation.endPage91
gi.citation.publisherPlaceBonn
gi.citation.startPage82
gi.conference.dateJune 15-17, 2011
gi.conference.locationBerlin
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
82.pdf
Größe:
275.06 KB
Format:
Adobe Portable Document Format