Logo des Repositoriums
 

Unsupervised learning of face detection models from unlabeled image streams

dc.contributor.authorWalther, Thomas
dc.contributor.authorWürtz, Rolf P.
dc.contributor.editorBrömme, Arslan
dc.contributor.editorBusch, Christoph
dc.date.accessioned2018-11-19T13:16:36Z
dc.date.available2018-11-19T13:16:36Z
dc.date.issued2012
dc.description.abstractModern artificial face detection shows impressive performance in a variety of application areas. This success comes at the cost of supervised training, using large-scale databases provided by human experts. In this paper, we propose a face detection system based on Organic Computing [vdM08] paradigms that acquires necessary domain knowledge autonomously and learns a conceptual model of the human face/head region. Performance of the novel approach is experimentally compared to state-of-the-art face detection, yielding competitive results in scenarios of moderate complexity.en
dc.identifier.isbn978-3-88579-290-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/18298
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2012
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-196
dc.titleUnsupervised learning of face detection models from unlabeled image streamsen
dc.typeText/Conference Paper
gi.citation.endPage231
gi.citation.publisherPlaceBonn
gi.citation.startPage221
gi.conference.date06.-07. September 2012
gi.conference.locationDarmstadt
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
221.pdf
Größe:
298.06 KB
Format:
Adobe Portable Document Format