Logo des Repositoriums
 

Improving GPU Matrix Multiplication by Leveraging Bit Level Granularity and Compression

dc.contributor.authorFett, Johannes
dc.contributor.authorSchwarz, Christian
dc.contributor.authorKober, Urs
dc.contributor.authorHabich, Dirk
dc.contributor.authorLehner, Wolfgang
dc.contributor.editorKönig-Ries, Birgitta
dc.contributor.editorScherzinger, Stefanie
dc.contributor.editorLehner, Wolfgang
dc.contributor.editorVossen, Gottfried
dc.date.accessioned2023-02-23T14:00:04Z
dc.date.available2023-02-23T14:00:04Z
dc.date.issued2023
dc.description.abstractIn this paper we introduce BEAM as a novel approach to perform GPU based matrix multiplication on compressed elements. BEAM allows flexible handling of bit sizes for both input and output elements. First evaluations show promising speedups compared to an uncompressed state-of-the-art matrix multiplication algorithm provided by nvidia.en
dc.identifier.doi10.18420/BTW2023-49
dc.identifier.isbn978-3-88579-725-8
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40356
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBTW 2023
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-331
dc.subjectGPU
dc.subjectMatrix multiplication
dc.titleImproving GPU Matrix Multiplication by Leveraging Bit Level Granularity and Compressionen
dc.typeText/Conference Paper
gi.citation.endPage772
gi.citation.publisherPlaceBonn
gi.citation.startPage763
gi.conference.date06.-10. März 2023
gi.conference.locationDresden, Germany

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
C1-6.pdf
Größe:
259.32 KB
Format:
Adobe Portable Document Format