Logo des Repositoriums
 

Application-specific quality metrics for the assessment of data for deep learning from large datasets

dc.contributor.authorGötte,Gesa Marie
dc.contributor.authorThielert,Bonito Steffen
dc.contributor.authorHerzog,Andreas
dc.contributor.editorDemmler, Daniel
dc.contributor.editorKrupka, Daniel
dc.contributor.editorFederrath, Hannes
dc.date.accessioned2022-09-28T17:10:56Z
dc.date.available2022-09-28T17:10:56Z
dc.date.issued2022
dc.description.abstractApplication-specific quality metrics support getting suitable data from large databases to pre-train deep neural networks or getting good statistical measures. Especially when using high-dimensional or multimodal sensor data from industrial processes the small amount of training examples from each device or plant must be supplemented by additional data. We present a system for the definition of application-specific metrics in a model composed of statistical functions and neural networks. Further, we introduce a business model for using this system for the interaction of data providers with their customers. In order to obtain suitable data, the user sends his request to the data provider in the form of a quality metric model and gets back the best fitted data. Our system helps the user to define the model through examples and by setting the model parameters through genetic algorithms.en
dc.identifier.doi10.18420/inf2022_84
dc.identifier.isbn978-3-88579-720-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39591
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-326
dc.subjectapplication-specific quality metrics
dc.subjecttransfer learning
dc.subjectprovider customer relationship.
dc.titleApplication-specific quality metrics for the assessment of data for deep learning from large datasetsen
gi.citation.endPage1021
gi.citation.startPage1015
gi.conference.date26.-30. September 2022
gi.conference.locationHamburg
gi.conference.sessiontitleDatenqualität und Qualitätsmetriken in der Datenwirtschaft (DQ)

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
dq_01.pdf
Größe:
319.97 KB
Format:
Adobe Portable Document Format