Logo des Repositoriums
 

Influence Estimation In Multi-Step Process Chains Using Quantum Bayesian Networks

dc.contributor.authorSelch,Maximilian
dc.contributor.authorMüssig,Daniel
dc.contributor.authorHänel,Albrecht
dc.contributor.authorLässig,Jörg
dc.contributor.authorIhlenfeldt,Steffen
dc.contributor.editorDemmler, Daniel
dc.contributor.editorKrupka, Daniel
dc.contributor.editorFederrath, Hannes
dc.date.accessioned2022-09-28T17:11:05Z
dc.date.available2022-09-28T17:11:05Z
dc.date.issued2022
dc.description.abstractDigital representatives of physical assets and process steps play a decisive role in analysing properties and evaluating the quality of the process. So-called digital twins acquire all relevant planning and process data, which provide the basis, for example, to investigate path accuracies in manufacturing. Each single process step aims to perform an ideal machining after the specification of a target geometry. However, the practical implementation of a step usually shows deviations from the targeted shape. The machine-learning based method of probabilistic Bayesian networks enables the quality estimation of the holistic process chain as well as improvements by targeted considerations of single steps and influence factors. However, the handling of large-scale Bayesian networks requires a high computational effort, whereas the processing with quantum algorithms holds potential improvements in storage and performance. Based on the issue of path accuracy, this paper considers the modelling and influence estimation for a milling operation including experiments on superconducting quantum hardware.en
dc.identifier.doi10.18420/inf2022_99
dc.identifier.isbn978-3-88579-720-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39604
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-326
dc.subjectmanufacturing
dc.subjectpath accuracy
dc.subjectdigital twin
dc.subjectquantum circuit
dc.subjectquantum algorithm
dc.subjectBayesian networks
dc.titleInfluence Estimation In Multi-Step Process Chains Using Quantum Bayesian Networksen
gi.citation.endPage1173
gi.citation.startPage1163
gi.conference.date26.-30. September 2022
gi.conference.locationHamburg
gi.conference.sessiontitleGI Quantum Computing Workshop

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
giquantum_06.pdf
Größe:
2.31 MB
Format:
Adobe Portable Document Format