Konferenzbeitrag
Maschinelles Lernen für Ressourcenplanung in Verteilten Systemen
Lade...
Volltext URI
Dokumententyp
Text/Conference Paper
Zusatzinformation
Datum
2021
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
Verteilte Rechensysteme sind aus der heutigen digitalen Welt nicht mehr wegzudenken: Suchmaschinen wie Google, Cloud-Speichersysteme wie Dropbox, Streaming-Dienste wie Netflix oder wissenschaftliche Großrechner führen komplexe Aufgaben auf verteilter IT-Infrastruktur aus. Dabei müssen entsprechende Systeme laufend Ressourcenoptimierung betreiben. Beispielsweise können durch Aktivierung von Ressourcen kurz vor Lastspitzen und anschließender Passivierung enorme Kostenersparnisse erzielt werden. Statt konventioneller Wenn-Dann-Beziehungen oder starrer Regelkreise beschreibe ich in meiner Dissertation adaptive und Vorhersage-basierte Techniken, wie sie in einer dynamischen Umgebung wie dem heutigen Internet unabdingbar sind. Hierfür verwende ich Modelle für maschinelles Lernen, insbesondere künstliche neuronale Netze und Kalman-Filter. Meine Ergebnisse zeigen, dass der Einsatz solcher Methoden Kosten und Ressourcenverbrauch senkt sowie die Verfügbarkeit und Verlässlichkeit der Systeme erhöht.