Logo des Repositoriums
 

Recognition of Activity States in Dairy Cows with SVMs and Graphical Models

dc.contributor.authorBehmann, Jan
dc.contributor.authorHendriksen, Kathrin
dc.contributor.authorMüller, Ute
dc.contributor.authorWalzog, Sebastian
dc.contributor.authorBüscher, Wolfgang
dc.contributor.authorPlümer, Lutz
dc.contributor.editorClasen, Michael
dc.contributor.editorHamer, Martin
dc.contributor.editorLehnert, Susanne
dc.contributor.editorPetersen, Brigitte
dc.contributor.editorTheuvsen, Brigitte
dc.date.accessioned2018-10-10T08:18:15Z
dc.date.available2018-10-10T08:18:15Z
dc.date.issued2014
dc.description.abstractActivity patterns of dairy cattle have received increasing interest in recent years because they promise insights into health state and well-being. The fusion with data from additional sensor signals promises a comprehensive monitoring of activity patterns composed of sequences of single activity states. We used a combination of a Support Vector Machine (SVM), a state of the art classification method, and a Conditional Random Field (CRF). SVMs distinguish single states, whereas CRFs label state sequences under consideration of specified constraints. In a preliminary experiment, a Local Positioning System was combined with a heart rate sensor in order to estimate seven spatiotemporal activity states. The application of the CRF to the SVM result caused a slight increase in accuracy (5%) but a major improvement at the correct determination of long sequences (increasing length of the longest common subsequence from 3481 to 6207 periods). This robust detection of long lying sequences allowed for the unaffected extraction of the resting pulse.en
dc.identifier.isbn978-388579-620-6
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/17112
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofIT-Standards in der Agrar- und Ernährungswirtschaft – Fokus: Risiko- und Krisenmanagement
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-273
dc.titleRecognition of Activity States in Dairy Cows with SVMs and Graphical Modelsen
dc.typeText/Conference Paper
gi.citation.endPage224
gi.citation.publisherPlaceBonn
gi.citation.startPage221
gi.conference.date24.-25. Februar 2014
gi.conference.locationBonn
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
221.pdf
Größe:
139.54 KB
Format:
Adobe Portable Document Format