Logo des Repositoriums
 
Zeitschriftenartikel

Stylistic classification of cuneiform signs using convolutional neural networks

Vorschaubild nicht verfügbar

Volltext URI

Dokumententyp

Text/Journal Article

Zusatzinformation

Datum

2024

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

De Gruyter

Zusammenfassung

The classification of cuneiform signs according to stylistic criteria is a difficult task, which often leaves experts in the field disagree. This study introduces a new publicly available dataset of cuneiform signs classified according to style and Convolutional Neural Network (CNN) approaches to differentiate between cuneiform signs of the two main styles of the first millennium bce, Neo-Assyrian and Neo-Babylonian. The CNN model reaches an accuracy of 83 % in style classification. This tool has potential implications for the recognition of individual scribes and the dating of undated cuneiform tablets.

Beschreibung

Yugay, Vasiliy; Paliwal, Kartik; Cobanoglu, Yunus; Sáenz, Luis; Gogokhia, Ekaterine; Gordin, Shai; Jiménez, Enrique (2024): Stylistic classification of cuneiform signs using convolutional neural networks. it - Information Technology: Vol. 66, No. 1. DOI: https://doi.org/10.1515/itit-2023-0114. De Gruyter. ISSN: 2196-7032

Zitierform

Tags