Logo des Repositoriums
 

Predicting How to Test Requirements: An Automated Approach

dc.contributor.authorWinkler, Jonas
dc.contributor.authorGrönberg, Jannis
dc.contributor.authorVogelsang, Andreas
dc.contributor.editorFelderer, Michael
dc.contributor.editorHasselbring, Wilhelm
dc.contributor.editorRabiser, Rick
dc.contributor.editorJung, Reiner
dc.date.accessioned2020-02-03T13:03:36Z
dc.date.available2020-02-03T13:03:36Z
dc.date.issued2020
dc.description.abstractAn important task in requirements engineering is to identify and determine how to verify a requirement (eg., by manual review, testing, or simulation; also called \emphpotential verification method). This information is required to effectively create test cases and verification plans for requirements. In this paper, we propose an automatic approach to classify natural language requirements with respect to their potential verification methods (PVM). Our approach uses a convolutional neural network architecture to implement a multiclass and multilabel classifier that assigns probabilities to a predefined set of six possible verification methods, which we derived from an industrial guideline. Additionally, we implemented a backtracing approach to analyze and visualize the reasons for the network's decisions. In a 10-fold cross validation on a set of about 27,000 industrial requirements, our approach achieved a macro averaged \fone score of 0.79 across all labels. The results show that our approach might help to increase the quality of requirements specifications with respect to the PVM attribute and guide engineers in effectively deriving test cases and verification plans.en
dc.identifier.doi10.18420/SE2020_43
dc.identifier.isbn978-3-88579-694-7
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/31722
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftware Engineering 2020
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-300
dc.subjectRequirements Engineering
dc.subjectRequirements Validation
dc.subjectTest Engineering
dc.subjectMachine Learning
dc.subjectNatural Language Processing
dc.subjectNeural Networks
dc.titlePredicting How to Test Requirements: An Automated Approachen
dc.typeText/Conference Paper
gi.citation.endPage
gi.citation.publisherPlaceBonn
gi.citation.startPage141
gi.conference.date24.-28. Feburar 2020
gi.conference.locationInnsbruck, Austria
gi.conference.sessiontitleTesting 2

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
B14-03.pdf
Größe:
70.1 KB
Format:
Adobe Portable Document Format