Logo des Repositoriums
 

De-duplication using automated face recognition: a mathematical model and all babies are equally cute

dc.contributor.authorSpreeuwers,Luuk
dc.contributor.editorBrömme,Arslan
dc.contributor.editorBusch,Christoph
dc.contributor.editorDantcheva,Antitza
dc.contributor.editorRathgeb,Christian
dc.contributor.editorUhl,Andreas
dc.date.accessioned2017-09-26T09:20:59Z
dc.date.available2017-09-26T09:20:59Z
dc.date.issued2017
dc.description.abstractDe-duplication is defined as the technique to eliminate or link duplicate copies of repeating data. We consider a specific de-duplication application where a subject applies for a new passport and we want to check if he possesses a passport already under another name. To determine this, a facial photograph of the subject is compared to all photographs of the national database of passports.We investigate if state of the art facial recognition is up to this task and find that for a large database about 2 out of 3 duplicates can be found while few or no false duplicates are reported. This means that de-duplication using automated face recognition is feasible in practice.We also present a mathematical model to predict the performance of de-duplication and find that the probability that k false duplicates are returned can be described well by a Poisson distribution using a varying, subject specific false match rate. We present experimental results using a large database of actual passport photographs consisting of 224 000 images of about 100 000 subjects and find that the results are predicted well by our model.en
dc.identifier.isbn978-3-88579-664-0
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/4641
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofBIOSIG 2017
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-70
dc.subjectDe-duplication
dc.subjectface recognition
dc.subjectlarge database
dc.subjectbinomial distribution
dc.titleDe-duplication using automated face recognition: a mathematical model and all babies are equally cuteen
gi.citation.endPage126
gi.citation.startPage117
gi.conference.date20.-22. September 2017
gi.conference.locationDarmstadt, Germany
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper11.pdf
Größe:
161.34 KB
Format:
Adobe Portable Document Format