Logo des Repositoriums
 

Understanding Agricultural Landscape Dynamics with Explainable Artificial Intelligence

dc.contributor.authorStiller, Stefan
dc.contributor.editorStolzenburg, Frieder
dc.date.accessioned2023-09-20T04:20:43Z
dc.date.available2023-09-20T04:20:43Z
dc.date.issued2023
dc.description.abstractDeep learning (DL) models, particularly those utilizing computer vision techniques such as proximal and remote sensing imagery, have witnessed extensive utilization within agriculture [KPB18]. These DL applications encompass diverse areas, including land cover and crop type mapping [Ku17], crop yield estimation [KS15, NNL19], drought monitoring [Sh19], plant disease spread analysis [Te20], and overall monitoring of agricultural systems. DL applications offer significant potential to enhance agricultural practices at various scales, spanning from individual organisms, field, landscape, to regional and even continental scales [Ry22b].en
dc.identifier.doi10.18420/ki2023-dc-09
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/42397
dc.language.isoen
dc.pubPlaceBonn
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDC@KI2023: Proceedings of Doctoral Consortium at KI 2023
dc.subjectdeep learning; precision agriculture; crop yield; explainable artificial intelligence; spatial cross validation; self-supervised learningen
dc.titleUnderstanding Agricultural Landscape Dynamics with Explainable Artificial Intelligenceen
dc.typeText
gi.citation.endPage87
gi.citation.startPage77
gi.conference.date45195
gi.conference.locationBerlin
gi.conference.sessiontitleDoctoral Consortium at KI 2023
gi.document.qualitydigidoc

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
C3-paper.pdf
Größe:
134.85 KB
Format:
Adobe Portable Document Format