Logo des Repositoriums
 

Generalizing of a high performance parallel Strassen implementation on distributed memory MIMD architectures

dc.contributor.authorNguyen, Duc Kien
dc.contributor.authorLavallee, Ivan
dc.contributor.authorBui, Marc
dc.contributor.editorEichler, Gerald
dc.contributor.editorKropf, Peter
dc.contributor.editorLechner, Ulrike
dc.contributor.editorMeesad, Phayung
dc.contributor.editorUnger, Herwig
dc.date.accessioned2019-01-11T09:33:37Z
dc.date.available2019-01-11T09:33:37Z
dc.date.issued2010
dc.description.abstractStrassen's algorithm to multiply two n x n matrices reduces the asymptotic operation count from O(n3) of the traditional algorithm to O(n2.81), thus designing efficient parallelizing for this algorithm becomes essential. In this paper, we present our generalizing of a parallel Strassen implementation which obtained a very nice performance on an Intel Paragon: faster 20% for n ≈ 1000 and more than 100% for n ≈ 5000 in comparison to the parallel traditional algorithms (as Fox, Cannon). Our method can be applied to all the matrix multiplication algorithms on distributed memory computers that use Strassen's algorithm at the system level, hence it gives us compatibility to find better parallel implementations of Strassen's algorithm.en
dc.identifier.isbn978-3-88579-259-8
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/19032
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartof10th International Conferenceon Innovative Internet Community Systems (I2CS) – Jubilee Edition 2010 –
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-165
dc.titleGeneralizing of a high performance parallel Strassen implementation on distributed memory MIMD architecturesen
dc.typeText/Conference Paper
gi.citation.endPage370
gi.citation.publisherPlaceBonn
gi.citation.startPage359
gi.conference.dateJune 3-5, 2010
gi.conference.locationBangkok, Thailand
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
359.pdf
Größe:
201.77 KB
Format:
Adobe Portable Document Format