Logo des Repositoriums
 

Fairness in Regression -- Analysing a Job Candidates Ranking System

dc.contributor.authorMarkert,Karla
dc.contributor.authorAhouzi,Afrae
dc.contributor.authorDebus,Pascal
dc.contributor.editorDemmler, Daniel
dc.contributor.editorKrupka, Daniel
dc.contributor.editorFederrath, Hannes
dc.date.accessioned2022-09-28T17:10:04Z
dc.date.available2022-09-28T17:10:04Z
dc.date.issued2022
dc.description.abstractFairness is one of the pillars of any well-functioning society. Recent law-making in the EU regulates the machine-centered approach and thus increases the necessity for certifiable fairness approaches. In this paper, we adapt previous literature on certifiable fairness in classification systems to a regression model for simplified candidates ranking. This model serves as an illustration for an application that should work fairly even if built upon a biased data set. With our synthetic dataset we are able to analyse the challenges of different fairness notions. Although the fairness training manages to improve the certifiable individual fairness, some of the encoded bias remains. We discuss the challenges we faced, including the selection of suitable parameters and the trade off between accuracy and fairness. We hope to encourage more research into fairness improvement and certification, within and beyond group and individual fairness.en
dc.identifier.doi10.18420/inf2022_109
dc.identifier.isbn978-3-88579-720-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39483
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-326
dc.subjectbias
dc.subjectfairness
dc.subjectregression
dc.subjectmachine learning
dc.subjectcandidates ranking
dc.titleFairness in Regression -- Analysing a Job Candidates Ranking Systemen
gi.citation.endPage1285
gi.citation.startPage1275
gi.conference.date26.-30. September 2022
gi.conference.locationHamburg
gi.conference.sessiontitleTrustworthy AI in Science and Society

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
trustai_04.pdf
Größe:
212.08 KB
Format:
Adobe Portable Document Format