Property-Driven Black-Box Testing of Numeric Functions
dc.contributor.author | Sharma, Arnab | |
dc.contributor.author | Melnikov, Vitalik | |
dc.contributor.author | Hüllermeier, Eyke | |
dc.contributor.author | Wehrheim, Heike | |
dc.contributor.editor | Engels, Gregor | |
dc.contributor.editor | Hebig, Regina | |
dc.contributor.editor | Tichy, Matthias | |
dc.date.accessioned | 2023-01-18T13:38:50Z | |
dc.date.available | 2023-01-18T13:38:50Z | |
dc.date.issued | 2023 | |
dc.description.abstract | In this work, we propose a property-driven testing mechanism to perform unit testing of functions performing numerical computations. Our approach, similar to the property-based testing technique, allows the tester to specify the requirements to check. Unlike property-based testing, the specification is then used to generate test cases in a targeted manner. Moreover, our approach works as a black-box testing tool, i.e. it does not require knowledge about the internals of the function under test. Therefore, besides on programmed numeric functions, we also apply our technique to machine-learned regression models. The experimental evaluation on a number of case studies shows the effectiveness of our testing approach. | en |
dc.identifier.isbn | 978-3-88579-726-5 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/40109 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | Software Engineering 2023 | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-332 | |
dc.subject | Property-based testing | |
dc.subject | Regression | |
dc.subject | Testing machine-learning models | |
dc.title | Property-Driven Black-Box Testing of Numeric Functions | en |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 112 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 111 | |
gi.conference.date | 20.–24. Februar 2023 | |
gi.conference.location | Paderborn | |
gi.conference.sessiontitle | Wissenschaftliches Hauptprogramm |
Dateien
Originalbündel
1 - 1 von 1
Vorschaubild nicht verfügbar
- Name:
- paper42.pdf
- Größe:
- 208.91 KB
- Format:
- Adobe Portable Document Format