Logo des Repositoriums
 

Property-Driven Black-Box Testing of Numeric Functions

dc.contributor.authorSharma, Arnab
dc.contributor.authorMelnikov, Vitalik
dc.contributor.authorHüllermeier, Eyke
dc.contributor.authorWehrheim, Heike
dc.contributor.editorEngels, Gregor
dc.contributor.editorHebig, Regina
dc.contributor.editorTichy, Matthias
dc.date.accessioned2023-01-18T13:38:50Z
dc.date.available2023-01-18T13:38:50Z
dc.date.issued2023
dc.description.abstractIn this work, we propose a property-driven testing mechanism to perform unit testing of functions performing numerical computations. Our approach, similar to the property-based testing technique, allows the tester to specify the requirements to check. Unlike property-based testing, the specification is then used to generate test cases in a targeted manner. Moreover, our approach works as a black-box testing tool, i.e. it does not require knowledge about the internals of the function under test. Therefore, besides on programmed numeric functions, we also apply our technique to machine-learned regression models. The experimental evaluation on a number of case studies shows the effectiveness of our testing approach.en
dc.identifier.isbn978-3-88579-726-5
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40109
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftware Engineering 2023
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-332
dc.subjectProperty-based testing
dc.subjectRegression
dc.subjectTesting machine-learning models
dc.titleProperty-Driven Black-Box Testing of Numeric Functionsen
dc.typeText/Conference Paper
gi.citation.endPage112
gi.citation.publisherPlaceBonn
gi.citation.startPage111
gi.conference.date20.–24. Februar 2023
gi.conference.locationPaderborn
gi.conference.sessiontitleWissenschaftliches Hauptprogramm

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper42.pdf
Größe:
208.91 KB
Format:
Adobe Portable Document Format