Logo des Repositoriums
 

Machine Learning for User Learning

dc.contributor.authorSchuhmacher, Janinade_DE
dc.contributor.editorHess, Steffende_DE
dc.contributor.editorFischer, Holgerde_DE
dc.date.accessioned2017-11-18T00:36:40Z
dc.date.available2017-11-18T00:36:40Z
dc.date.issued2017
dc.description.abstractTo guide users through their business application’s functionality requires an intelligent digital assistance system to adapt to the user’s stage of expertise. Drawing on event segmentation theory and knowledge space theory, we propose to model the users’ domain specific knowledge and their learning process dynamically in the interaction between system and user. In the support process, the system retrieves the support content that matches the user’s knowledge state from a hierarchically organized case base. Using case-based reasoning as a psychologically inspired machine learning method facilitates incorporating the user’s feedback in the interaction: the system continuously updates its user model to learn how to support the user most efficiently and effectively.de
dc.identifier.doi10.18420/muc2017-up-0127de_DE
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/5766
dc.language.isodede_DE
dc.publisherGesellschaft für Informatik e.V.de_DE
dc.relation.ispartofMensch und Computer 2017 - Usability Professionalsde_DE
dc.relation.ispartofseriesMensch und Computerde_DE
dc.subjectmachine learningde_DE
dc.subjectPsychologiede_DE
dc.subjectdigitales Assistenzsystemde_DE
dc.subjectUser Modelde_DE
dc.subjectCase Based Reasoningde_DE
dc.titleMachine Learning for User Learningde
dc.typeText/Conference Paperde_DE
gi.citation.publisherPlaceRegensburgde_DE
gi.conference.sessiontitleUP: Young Professionals (15 min.)de_DE
gi.document.qualitydigidocde_DE

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
2017_UP_127.pdf
Größe:
277.81 KB
Format:
Adobe Portable Document Format