Logo des Repositoriums
 
Konferenzbeitrag

Towards Automating Malware Classification and Characterization

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2008

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e. V.

Zusammenfassung

Spam has become a problem of global impact. Most spam messages are currently sent out by captured machines organized in bot networks, which are infected with malicious software and are therefore under direct control of spammers. The connected explosion of automatically generated new malware variants has manual analysis at a great disadvantage, while classical automated analysis systems have problems keeping up with the diversity of new variants. Here, we propose using machine learning approaches to learn global (i.e. malware intent) and local (i.e. specific functionality) malware properties based on behavioral traces of malware recorded in virtual environments, and test them on a small corpus. Initial results are somewhat promising, so we also discuss areas for improvement as well as current and future challenges.

Beschreibung

Seewald, Alexander K. (2008): Towards Automating Malware Classification and Characterization. SICHERHEIT 2008 – Sicherheit, Schutz und Zuverlässigkeit. Beiträge der 4. Jahrestagung des Fachbereichs Sicherheit der Gesellschaft für Informatik e.V. (GI). Bonn: Gesellschaft für Informatik e. V.. PISSN: 1617-5468. ISBN: 978-3-88579-222-2. pp. 291-302. Regular Research Papers. Saarbrücken. 2.- 4. April 2008

Schlagwörter

Zitierform

DOI

Tags